89 research outputs found

    Towards an anthropomorphic design of minimally invasive instrumentation for soft tissue robotic surgery

    Get PDF
    Minimally invasive procedures, such as laparoscopy, have significantly decreased blood loss, postoperative morbidity and length of hospital stay. Robot-assisted Minimally Invasive Surgery (MIS) has offered refined accuracy and more ergonomic instruments for surgeons, further minimizing trauma to the patient [1]. On the other hand, training surgeons in minimally invasive surgical procedures is becoming increasingly long and arduous [2]. In this paper, we outline the rationale of a novel design of instruments for robotic surgery with increased dexterity that will provide more natural manipulation of soft tissues. The proposed system will not only reduce the training time for surgeons but also improve the ergonomics of the procedure. © 2012 Springer-Verlag

    Evolvable Embryonics: 2-in-1 Approach to Self-healing Systems

    Get PDF
    This paper covers the authors’ recent research in the area of evolutionary design optimisation in electronic application domain (Evolvable Hardware). This will be also presented in the context of biologically inspired systems where Evolvable Hardware is concerned with evolutionary synthesis of self-healing systems and potentially hardware capable of online adaptation to dynamically changing environment. We will also illustrate how EAs can produce novel and unintuitive design solutions, and possibly new design principles. The novelty of this research project addresses this compelling change in the traditional landscape of the associated research disciplines by seeking to provide a novel biologically inspired mechanism to support the design optimisation of self-healing architectures, that is Evolvable-Embryonics

    Toward Bio-Inspired Tactile Sensing Capsule Endoscopy for Detection of Submucosal Tumors

    Get PDF
    © 2016 IEEE. Here, we present a method for lump characterization using a bio-inspired remote tactile sensing capsule endoscopy system. While current capsule endoscopy utilizes cameras to diagnose lesions on the surface of the gastrointestinal tract lumen, this proposal uses remote palpation to stimulate a bio-inspired tactile sensing surface that deforms under the impression of both hard and soft raised objects. Current capsule endoscopy utilizes cameras to visually diagnose lesions on the surface of the gastrointestinal tract. Our approach introduces remote palpation by deploying a bio-inspired tactile sensor that deforms when pressed against soft or hard lumps. This can enhance visual inspection of lesions and provide more information about the structure of the lesions. Using classifier systems, we have shown that lumps of different sizes, shapes, and hardnesses can be distinguished in a synthetic test environment. This is a promising early start toward achieving a remote palpation system used inside the GI tract that will utilize the clinician's sense of touch

    A novel bio-inspired tactile tumour detection concept for capsule endoscopy

    Get PDF
    Examination of the gastrointestinal(GI) tract has traditionally been performed using endoscopy tools that allow a surgeon to see the inside of the lining of the digestive tract. Endoscopes are rigid or flexible tubes that use fibre-optics or cameras to visualise tissues in natural orifices. This can be an uncomfortable and very invasive procedure for the patient. © 2014 Springer International Publishing

    Embryonics: A path to artificial life?

    Get PDF
    Electronic systems, no matter how clever and intelligent they are, cannot yet demonstrate the reliability that biological systems can. Perhaps we can learn from these processes, which have developed through millions of years of evolution, in our pursuit of highly reliable systems. This article discusses how such systems, inspired by biological principles, might be built using simple embryonic cells. We illustrate how they can monitor their own functional integrity in order to protect themselves from internal failure or from hostile environmental effects and how faults caused by DNA mutation or cell death can be repaired and thus full system functionality restored. ©2006 Massachusetts Institute of Technology

    Feature and performance comparison of the V-REP, Gazebo and ARGoS robot simulators

    Get PDF
    © Springer International Publishing AG, part of Springer Nature 2018. In this paper, the characteristics and performance of three open-source simulators for robotics, V-REP, Gazebo and ARGoS, are thoroughly analysed and compared. While they all allow for programming in C++, they also represent clear alternatives when it comes to the trade-off between complexity and performance. Attention is given to their built-in features, robot libraries, programming methods and the usability of their user interfaces. Benchmark test results are reported in order to identify how well the simulators can cope with environments of varying complexity. The richness of features of V-REP and the strong performance of Gazebo and ARGoS in complex scenes are highlighted. Various usability issues of Gazebo are also noted

    Mechatronic implementation in minimally invasive surgical instruments

    Get PDF

    Towards tactile sensing applied to underwater autonomous vehicles for near shore survey and de-mining

    Get PDF
    Artificial tactile whisker sensors demonstrate an approach to localisation [1] that is robust to harsh environmental disturbances, endowing autonomous systems with the ability to operate effectively in confined, noisy and visually occluded spaces, such as collapsed buildings or mine shafts, where conventional sensors become unreliable [2]. Marine engineering applications could benefit from such tactile sensors due to the lack of robust underwater close proximity sensing techniques. Animals such as walruses, seals and manatees all have exquisitely sensitive whiskers, which they use for hunting and foraging. Building upon a recent pilot study in underwater tactile sensing [3], we present the motivation for further research and our work plans toward a demonstrator platform for near shore survey and demining. © 2012 Springer-Verlag

    Believing in BERT:Using expressive communication to enhance trust and counteract operational error in physical Human-robot interaction

    Get PDF
    Strategies are necessary to mitigate the impact of unexpected behavior in collaborative robotics, and research to develop solutions is lacking. Our aim here was to explore the benefits of an affective interaction, as opposed to a more efficient, less error prone but non-communicative one. The experiment took the form of an omelet-making task, with a wide range of participants interacting directly with BERT2, a humanoid robot assistant. Having significant implications for design, results suggest that efficiency is not the most important aspect of performance for users; a personable, expressive robot was found to be preferable over a more efficient one, despite a considerable trade off in time taken to perform the task. Our findings also suggest that a robot exhibiting human-like characteristics may make users reluctant to 'hurt its feelings'; they may even lie in order to avoid this.Comment: 8 pages, 4 figure

    A connected autonomous vehicle testbed: Capabilities, experimental processes and lessons learned

    Get PDF
    VENTURER was one of the first three UK government funded research and innovation projects on Connected Autonomous Vehicles (CAVs) and was conducted predominantly in the South West region of the country. A series of increasingly complex scenarios conducted in an urban setting were used to: (i) evaluate the technology created as a part of the project; (ii) systematically assess participant responses to CAVs and; (iii) inform the development of potential insurance models and legal frameworks. Developing this understanding contributed key steps towards facilitating the deployment of CAVs on UK roads. This paper aims to describe the VENTURER Project trials, their objectives and detail some of the key technologies used. Importantly we aim to introduce some informative challenges that were overcame and the subsequent project and technological lessons learned in a hope to help others plan and execute future CAV research. The project successfully integrated several technologies crucial to CAV development. These included, a Decision Making System using behaviour trees to make high level decisions; A pilot-control system to smoothly and comfortably turn plans into throttle and steering actuation; Sensing and perception systems to make sense of raw sensor data; Inter-CAV Wireless communication capable of demonstrating vehicle-to-vehicle communication of potential hazards. The closely coupled technology integration, testing and participant-focused trial schedule led to a greatly improved understanding of the engineering and societal barriers that CAV development faces. From a behavioural standpoint the importance of reliability and repeatability far outweighs a need for novel trajectories, while the sensor-to-perception capabilities are critical, the process of verification and validation is extremely time consuming. Additionally, the added capabilities that can be leveraged from inter-CAV communications shows the potential for improved road safety that could result. Importantly, to effectively conduct human factors experiments in the CAV sector under consistent and repeatable conditions, one needs to define a scripted and stable set of scenarios that uses reliable equipment and a controllable environmental setting. This requirement can often be at odds with making significant technology developments, and if both are part of a project’s goals then they may need to be separated from each other
    • …
    corecore